Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
mBio ; 14(2): e0041623, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2278130

ABSTRACT

Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 (Omicron) has rapidly become the dominant strain, with an unprecedented number of mutations within its spike gene. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies and entry inhibitors. In this study, we found that Omicron spike has evolved to escape neutralization by three-dose inactivated-vaccine-elicited immunity but remains sensitive to an angiotensin-converting enzyme 2 (ACE2) decoy receptor. Moreover, Omicron spike could use human ACE2 with a slightly increased efficiency while gaining a significantly increased binding affinity for a mouse ACE2 ortholog, which exhibits limited binding with wild-type (WT) spike. Furthermore, Omicron could infect wild-type C57BL/6 mice and cause histopathological changes in the lungs. Collectively, our results reveal that evasion of neutralization by vaccine-elicited antibodies and enhanced human and mouse ACE2 receptor engagement may contribute to the expanded host range and rapid spread of the Omicron variant. IMPORTANCE The recently emerged SARS-CoV-2 Omicron variant with numerous mutations in the spike protein has rapidly become the dominant strain, thereby raising concerns about the effectiveness of vaccines. Here, we found that the Omicron variant exhibits a reduced sensitivity to serum neutralizing activity induced by a three-dose inactivated vaccine but remains sensitive to entry inhibitors or an ACE2-Ig decoy receptor. Compared with the ancestor strain isolated in early 2020, the spike protein of Omicron utilizes the human ACE2 receptor with enhanced efficiency while gaining the ability to utilize mouse ACE2 for cell entry. Moreover, Omicron could infect wild-type mice and cause pathological changes in the lungs. These results reveal that antibody evasion, enhanced human ACE2 utilization, and an expanded host range may contribute to its rapid spread.


Subject(s)
COVID-19 , Immune Evasion , Humans , Animals , Mice , Mice, Inbred C57BL , Angiotensin-Converting Enzyme 2/genetics , Host Specificity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
2.
Front Immunol ; 13: 1084331, 2022.
Article in English | MEDLINE | ID: covidwho-2242642

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) invades the human body by binding to major receptors such as ACE2 via its S-spike protein, so the interaction of receptor-binding sites has been a hot topic in the development of coronavirus drugs. At present, the clinical progress in monoclonal antibody therapy that occurred early in the pandemic is gradually showing signs of slowing. While recombinant soluble ACE2, as an alternative therapy, has been modified by many engineering methods, both the safety and functional aspects are approaching maturity, and this therapy shows great potential for broadly neutralizing coronaviruses, but its progress in clinical development remains stalled. Therefore, there are still several key problems to be considered and solved for recombinant soluble ACE2 to be approved as a clinical treatment as soon as possible.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Carrier Proteins , Recombinant Proteins
3.
Trends Pharmacol Sci ; 43(10): 838-851, 2022 10.
Article in English | MEDLINE | ID: covidwho-1956357

ABSTRACT

Decoy receptor proteins that trick viruses to bind to them should be resistant to viral escape because viruses that require entry receptors cannot help but bind decoy receptors. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for coronavirus cell entry. Recombinant soluble ACE2 was previously developed as a biologic against acute respiratory distress syndrome (ARDS) and verified to be safe in clinical studies. The emergence of COVID-19 reignited interest in soluble ACE2 as a potential broad-spectrum decoy receptor against coronaviruses. In this review, we summarize recent developments in preclinical studies using various high-affinity mutagenesis and Fc fusion approaches to achieve therapeutic efficacy of recombinant ACE2 decoy receptor against coronaviruses. We also highlight the relevance of stimulating effector immune cells through Fc-receptor engagement and the potential of using liquid aerosol delivery of ACE2 decoy receptors for defense against ACE2-utilizing coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Receptors, Virus , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
4.
mBio ; 13(2): e0009922, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1736029

ABSTRACT

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents , COVID-19/therapy , Humans , Immune Evasion , Immunization, Passive , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL